home *** CD-ROM | disk | FTP | other *** search
Text File | 1994-06-05 | 3.3 KB | 129 lines | [MATS/MATL] |
- echo off;
- % NUMERICAL METHODS: MATLAB Programs, (c) John H. Mathews 1994
- % To accompany the text:
- % NUMERICAL METHODS for Mathematics, Science and Engineering, 2nd Ed, 1992
- % Prentice Hall, Englewood Cliffs, New Jersey, 07632, U.S.A.
- % This free software is complements of the author.
-
- % Algorithm 8.2 (Nelder-Mead's Minimization Method).
- % Section 8.1, Minimization of a Function, Page 414
- echo on; clc; format short; hold off; clear
-
- % This program finds the minimum of a function Fn(X),
- % where X is an n-dimensional vector.
- % The technique is the Nelder-Mead method for n-dimensions.
- % The function Fn(X) is to be placed in two M-files
- % The function f.m is for graphing and Fn.m is for computing.
-
- % function z = f(x,y)
- % z = x.^2 - 4.*x + y.^2 - y - x.*y;
-
- % function z = Fn(X)
- % x = X(1); y = X(2);
- % z = x^2 - 4*x + y^2 - y - x*y;
-
- delete f.m
- diary f.m; disp('function z = f(x,y)');...
- disp('z = x.^2 - 4.*x + y.^2 - y - x.*y;');...
- diary off;
-
- delete Fn.m
- diary Fn.m; disp('function z = Fn(X)');...
- disp('x = X(1); y = X(2);');...
- disp('z = x^2 - 4*x + y^2 - y - x*y;');...
- diary off;
-
- % Remark. f.m and Fn.m nelder.m are used for Algorithm 8.2
- % Remark. f(x,y) is used only to graph 2-dimensional functions.
- f(0,0); Fn([0 0]);
- pause % Press any key to continue.
-
- clc;
- % The example is 2-dimensional, hence a surface z = f(x,y)
-
- % can be graphed. (Omit this section for higher dimensions.)
-
- % The endpoints of the rectangle [a,b] x [c,d] are a,b,c,d.
-
- % Place the minimum and maximum number of iterations in
-
- % min1 and max1, respectively.
-
- % Place the tolerance in epsilon.
-
- a = 0;
- b = 4;
- c = 0;
- d = 3;
- min1 = 8;
- max1 = 80;
- epsilon = 1e-6;
-
- pause % Press any key to graph the 2-dim function.
-
- clc; clg;
- hs = (b-a)/16;
- ks = (d-c)/16;
- [Xs,Ys] = meshdom(a:hs:b, c:ks:d);
- Zs = f(Xs,Ys);
- mesh(Zs);...
- title('To search for the minimum of z = f(x,y).');...
- shg; pause % Press any key to enter the starting vertices.
-
- clc;
-
- % The Nelder-Mead simplex method or "polytope method is used to
-
- % find the minimum of the n-dim function Fn(X), for convenience,
-
- % Fn(X) can be expressed using X = (x1,x2,x3,x4,x5,x6) and the
-
- % variables x = x1 , y = x2 , z = x3 , u = x4 , v = x5 , w = x6
-
- % You must supply n+1 linearly independent starting points:
-
- % For n=2, supply: V(1,1:n), V(2,1:n), V(3,1:n)
-
- % For n=3, supply: V(1,1:n), V(2,1:n), V(3,1:n), V(4,1:n)
-
- n = 2;
- V(1,1:n) = [0.0 0.0];
- V(2,1:n) = [1.2 0.0];
- V(3,1:n) = [0.0 0.8];
-
- pause % Press any key to continue.
-
- clc; clg;
- a0 = 0;
- b0 = 4;
- c0 = 0;
- d0 = 3;
- hold off;
- XS = V(1:n+1,1)'; XSL = [XS,XS(1)];
- YS = V(1:n+1,2)'; YSL = [YS,YS(1)];
- axis([a0 b0 c0 d0]);...
- plot(XS,YS,'or',XSL,YSL,'-g');...
- hold on;...
- plot([a0 b0],[0 0],'b',[0 0],[c0 d0],'b');...
- xlabel('x');...
- ylabel('y');...
- title('The simplex vertices for Nelder-Mead`s method.');...
- grid;...
- shg; pause % Press any key to continue.
-
- [V0,y0,dV,dy,P,Q] = nelder('Fn',V,min1,max1,epsilon,1);
-
- pause % Press any key to find the minimum of Fn(X).
-
- clc;
- format long;
- Mx1 = 'The coordinates of the point P are:';
- Mx2 = 'Error bound for the coordinates of P:';
- Mx3 = 'The minimum value F(P) is:';
- Mx4 = 'Error bound for F(P) is:';
- clc,echo off,diary output,...
- disp(''),disp(Mx1),disp(V0),disp(Mx2),...
- disp(['± ',num2str(dV),' ± ',num2str(dV)]),disp(''),...
- disp(Mx3),disp(y0),disp(Mx4),disp(['± ',num2str(dy)]),...
- diary off,echo on
-